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I. INTRODUCTION

The problem that we address is the protection of a set of

T identical targets that may come under attack by A identical

attacking weapons. The targets are to be defended by D identical

defensive interceptors which must be preallocated to defend

selected targets. The attacker is aware of the number of inter-

ceptors but is ignorant of their allocation.

In two seminal papers ([6] and [7]; see also [8]) Matheson

addressed the case where the defender knows the size A of the

potential attack but not its allocation. He represented the

scenario as a two-person, zero-sum game by allowing the attacker

and defender to choose allocations x and y independently, and

adopted the expected fraction of surviving targets as the payoff

function. We refer to this as the basic game.

Later ([3], [4], [5], [9] and [10]) a number of authors

developed allocation procedures based on linear programming

solution procedures for solving the game-theoretic problem

,* studied by Matheson. Current modelling is being performed which

utilizes these methods. In all cases, the attack size A is

assumed to be known.

Figure 1 exhibits the value of the basic game as a function

of attack size for a typical Matheson game with 1000 targets and

6000 defenders. Each point on the curve labeled "game value"

represents the proportion of targets surviving an attack of A

weapons when the attacker knows that D=6000 and the defender

* knows A, but neither knows how these weapons are to be deployed.

"" With both the attacker and defender selecting optimal strategies

in the sense of game theory, the game value plotted in Figure 1

represents the outcome of these strategies.

A basic assumption implicit in the Matheson game is that

both "players" are acting as though they are playing the same

game, i.e., they are both informed of all of the parameters and
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rules of the game. For each attack size A, there is a specific

game, all other parameters remaining the same.

However, the actual attack size is an option of the attacker,

who can choose to attack with any number of weapons up to his

total inventory. If he is interested only in minimizing the

proportion of surviving targets, the monotonically decreasing

nature of the game value curve will impel him to attack with

his total inventory. If, however, the attacker has other

interests and attacks with fewer than his total inventory, or if

the defender overestimates the attacker's maximum inventory, or

if a weaker opponent attacks, other results can be expected.

Suppose, for example, that the defender assumes in his

planning an attack of 9000. Knowing this, the attacker actually

attacks with 1000. If the defender were to use a strategy optimal

against an optimal attack of 1000 (i.e., if the defender knew

which game the attacker had chosen) he could expect about 880

survivors. However, if the attacker were to discover the defend-

er's assumption, he could take advantage of it by optimizing

against it. Doing so, he could bring the expected number of

surviving targets down to about 720 (see Figure 1).

Alternatively, assume that the defender assumes an attack

size of 1000. The attacker, knowing this, attacks with 9000.

Had the defender planned on the basis of 9000, the expected

number of survivors would be about 85, but the mis-planning of

the defense would yield an expected number of survivors of about

57 (see Figure 1).

The robust strategies developed in this paper do not require

the defender to assume an attack size. Rather, the defender

chooses a strategy which is good over a wide range of attack

3



sizes, though not necessarily best for any particular attack size.

The attacker, knowing that the defender is adopting a robust

strategy, chooses the optimal attack strategy for the number of

weapons he chooses to expend, and the expected number of survivors

is based on this attack and allocation.

Figure 1 shows the game value, the results of the defense

assuming two attack sizes and the attacker taking ad-rantage of

this, and the results of a robust strategy. In the above example,

the robust defense yields expected survivors of 820 of 880 (as

compared with 720 of 880) when the attack is 1000, and 79 of 85

(as compared with 57 of 85) when the attack is 9000.

In the main body of this paper we study the expected number

of survivors under two behavioral assumptions for the defender

and two for the attacker, resulting in four separate cases. The

defender may (a) believe the attacker will use the optimal

strategy of the basic game or (b) believe the attacker will use

a strategy optimal against the defender's robust strategy. The

attacker may (a) use the optimal strategy of the basic game or

(b) use a strategy optimal against the defender's robust

strategy. Thus, including the basic game, we examine five

separate cases and show that a fairly wide range of outcomes

results from the various assumptions.

In Section II, we summarize the basic game of Matheson and

its equivalent linear program. Section III introduces the notion

of a robust strategy and defines the behavioral assumptions for

the defender and the attacker. Section IV contains the

mathematical problems addressed in the various cases. In Section

V we present an example solved for four combinations of kill

parameters for the defense and the offense. The appendices

discuss alternative physical assumptions on the engagement at

each target.

14



II. THE BASIC GAME

In this section we summarize the basic game to be discussed

and set down the underlying assumptions and notation. The

summary is based on Matheson ([6] and [7]) and Hogg [4].

There are:

T targets of equal value to be defended

A missiles attacking these targets

D defending interceptors.

Integer values of T, A and D are given. We consider T = 1000,

A = 1000, 2000,...,10,000, and D = 6000 in the examples of this

paper.

Also given for each attack and defense allocation is a value

of:

= probability that a target under attack by i attacking
missiles and J defending interceptors will survive.

The particular values of PiJ result from specific assumptions

on how the attack and defense at each target interact. In the

original work of Matheson ([6] and [7]), it was assumed that the

attack could be sequentially numbered and that at most one

defender could engage an attacker. In our paper, the numerical

work displayed in the main body is based on the assumption of a

simultaneous attack repelled by a "uniform defense" at each

target. In Appendix A we show that this is optimal for the

defender when the attack size is known and derive an explicit

expression for piJ. In Appendix B we present results for the

assumption of sequential attack of unknown size. The Prim-Read

firing doctrine is utilized by the defense. Comparisons are

made of results for simultaneous and sequential attacks. In

Appendix C we address the case of sequential attack of known

size, and with a defender "shoot-look-shoot" capability, giving

recursion relations for computing Pij for various attacks and

defenses.
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We assume that (1) at most R attacking missiles can attack I
a single target and (2) at most S defending interceptors can

defend a single target. In this paper we set R = S = 10.

The attacker and defender must choose an allocation of their

inventories to the set of targets. Both A and D are known

beforehand, as well as the pij s, but the actual allocations are

unknown to the opponents.

If we set

x= fraction of the targets to be attacked by
i attacking missiles

and

y = fraction of the targets to be defended by
j defending interceptors,

then it has been shown (in the above references) that

S(x,y) = XTPy

gives the fraction of the T targets that are expected to survive

under attack and defense strategies x and y, where

yx- (y0 , ... , yS)
and

P =(PiJ)

The value of the basic game G is:

v*(A) ; maximum minimum xTpy
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.7, .7

.7, .9

.9, .7

.9, .9

For each of these a,d pairs are computed, and displayed in

Tables 1-4:

(a) The basic game value v*(A) = S(x*(A), y*(A)) and

corresponding optimal strategies x*(A) and y*(A) for

A = {I000, 2000,..., 10,000).

(b) The defender's robust strategy y under the defender's

assumption that the attacker will use his optimal

strategies x*(A) based on the game value.

(i) The expected fraction of survivors v* (A) =l ,I1.

S(x*(A), y) when the defender is correct,

(ii) The optimal attacker response x(y I ) and

corresponding value v*iii(A) = (S(x(y ),yI )

when the defender is mistaken.

yII"
(c) The defender's robust strategy y under the defender's

assumption that the attacker will base his attack on
yII
y

(i) The expected fraction v* 1 (A) =

S(x*(A),y I I) when the defender is mistaken,

(ii) The optimal attacker response x(yI ) and

corresponding value v*Iiii(A) =
yII yII -

S(x(y ),y ) when the defender is correct.

18
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V. EXAMPLES

We present four examples to illustrate the concepts discussed

in Section III. In each of these examples we consider

T = 1000

D = 6000

= {1000, 2000, .... , 0,000'

with

R= S = 10

The survival probabilities PiJ are computed by the formula

pj= (1-a (1-d) [J /i] 1) l<J /i>(1-a (1-d) [J/1])i(l-<J/)

where

a = probability that a single attacker will destroy an
undefended target.

d = probability that a single interceptor will destroy an

attacker at which it is directed.

The basic underlying assumption here is that the defense will

spread its defenders as uniformly as possible over the attackers.

This assumption is justified in Appendix A, and it is shown to

result in a defense which maximizes the probability that the

target will survive.

The four examples contained herein differ only in the values

a and d, which are set equal to the a,d pairs:

17



v* (A)

In this case, the defender again solves the above problem

(LP(II,II)) to obtain an optimal solution y". Here, however,

the attacker is using a strategy which is optimal for each attack

size A. Thus the value is

v*ii'i(A) = x*(A)TPyII (A £ A).

16



subject to:

s(A) < P 0 y

s(A) - t(A) < P 1 y

s(A) - Rt(A) P Ry

where y e Y is given. Thus the defense sees the problem as

S: I I
maximize minimum (I/v*(A)) maximum s(A) - (A/T)t(A)

y C Y A E : s(A),t(A)

where s(A) and t(A) are restricted as above. But this is

equivalent to choosing y, p, s(A) for A e A and t(A) for A A

which solve:

B maximize p

Y S Y

subject to:

pv*(A) < s(A) - (A/T)t(A) LP(II,II)

s(A) < P0 y

s(A) - t(A) < P1y

A A

s(A) - Rt(A) < PRy

If we denote the solution of this linear program 
by y

and the optimal responses (obtained from (1) above) by 
x(y I I )

(A e T) we have

v*i (A) - x(yII)TPyII (A )

15
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If the solution of this problem is yI, then

v* 1 (A) = x*(A)TPyI (A

where x*(A) solves LP(O).

V*lIjll(A )

SIn this case the defender sees the same problem as above
I

and constructs the same robust strategy y . Now, however, the
Iattacker knows y and hence can optimize against it.

Thus

v* I (A)- minimum xTPyI (A e A)

x e X(A)

where yI solves LP(I,I) and where X(A) is defined analogous to Y.

v*III

In this case the defender still wants to solve the problem

maximize minimum {RA(X,y) 1

yC Y A A

but now, however,

RA(x,y) ; (1/v*(A)) minimum xTPy

x e X(A)

This is a linear program (for each fixed y) and its dual is

(I/v*(A)) maximum {s(A)- (A/T)t(A)}

14



IV. LINEAR PROGRAMMING EQUIVALENTS

Each of the problems described above can be formulated and

Shence solved as a linear program. In this section we present the

problems addressed.

In Section II, we derived the game value v*(A) in terms of

the optimal value of a linear program LP(O). The solution of

such linear programs (one for each value of A) has been denoted

by (x*(A), y*(A)). We now wish to derive expressions for the

expected fraction of surviving targets under the various

assumptions.

v* 1 (A)

By definition, the defense seeks to solve the problem

maximize minimum x*(A)T Py/v*(A)

yCY AcA

But this is equivalent to the linear program

maximize p

subject to:

SyC Y LP(I,.I)

: p > 0

p < x*(A)TPy/v*(A) for all A e A

13



ATTACKER RESPONSE I: The attacker employs his optimal game

strategy x*(A) for any A e A.

ATTACKER RESPONSE II: The attacker is capable of recognizing and

optimally adapting to any strategy that the defender employs.

We could, alternatively, view this pair of assumptions as

distinguishing the correctness of the defender's assumptions.

Keeping in mind that the defender is, in all cases, interested

in building a robust strategy, we summarize the four possible

combinations as follows:

The defender sees the attacker as
1,1 "uninformed". The defender is

(Defender I, Attacker I) correct. The attacker is
"uninformed".

The defender sees the attacker as
I,II "uninformed". The defender is

(Defender I, Attacker II) mistaken. The attacker is
"informed".

The defender sees the attacker
III as "informed". The defender

(Defender II, Attacker I) is incorrect. The attacker is
"uninformed".

The defender sees the attacker
IIII as "informed". The defender

(Defender II, Attacker II) is correct. The attacker is
"informed".

V4

".1
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Lof expected surviving value to game value. But he is now faced

with the question of defining the expected surviving value for

each attack size. It turns out that this definition is

critically dependent on the defender's assumptions of the

attacker's behavior, and the correctness of this assumption.

We distinguish two "defender assumptions".

DEFENDER ASSUMPTION I: The attacker will employ his optimal

game strategy x*(A) for any particular attack size A.

DEFENDER ASSUMPTION II: The attacker can discover, and

therefore optimize against, whatever strategy the defender

employs.

Thus, with assumption I, the defender feels that the

attacker is oblivious to the defender's desire to install a

robust defense. In game-theoretic terms, the defender assumes

that the attacker, in spite of the fact that he will choose the

game (i.e., choose A), views the defender as playing the game

optimally, and hence will use his own optimal strategy x*(A).

- Such an assumption is, of course, vulnerable to

exploitation. Either player in a two-person, zero-sum game can

expect the game value if he employs any combination of his active

strategies, as long as his opponent uses his optimal game

strategy. However, a player who deviates from his optimal game

strategy is vulnerable, and can generally not expect the game

value if his opponent learns of the deviation.

With assumption II, we give the defender the foresight or

good sense to recognize his opponent's capability to predict and

to take advantage of a particular defense strategy.

In order to determine the actual expected outcomes RA(X,y*)

for a given y*, we further distinguish a pair of alternatives

reflecting the correctness of the defender's assumptions.

11I



Thus we seek to determine:

maximum minimum RA(X,y) 1

yCY AeA

where

S S

Y {(Y 0,...Y 5 ): EyJ = 1, E JYJ = D/T,1 y j 0}

J=0 j=1

A 11000, 2000,...,10,000}

As it stands, the problem is not well-defined because we have not

specified the vector x. We do this by making assumptions on the

ways that the defender views his opponent and on the correctness

of these views.

We adopt the ratio measure because we wish to do relatively

well in all cases. In particular, we wish to avoid the situations

discussed in the introductory section. We do not wish to plan

for a small attack and fail almost completely if the attack is

large, for we are interested in preserving some missiles for

finite deterrence. Also, we do not wish to plan for a large

attack and lose a substantial portion of our force if the attack

is small, in order to deny any potential aggressor an attractive

psmall exchange of his missiles for ours. Thus, we are concerned

about the behavior of the entire range of the expected survivors

as a function of attack size. We choose a ratio measure rather than

a difference measure because this problem is in the context of

many other strategic nuclear weapon planning problems, and we

cannot visualize how a difference measure across a wide range

of attacking weapons would fit into the overall planning context.

We are satisfied with performing relatively well over the range

of interest.

The defender desires to choose a strategy y* which is

"robust against attack size", i.e., maximizes the smallest ratio

10



III. STRATEGIES ROBUST AGAINST ATTACK SIZE

For each possible attack size A, there is an associated game

value v*(A), as well as a pair of (generally mixed) optimal

strategies (x*(A), y*(A)). However, we would not expect the

attacker to divulge the specific value of A before the attack

begins. Since y*(A) is optimal for the defender only over an

interval [A-,A +], it generally will not represent an optimal

strategy for values outside of this interval. We are therefore

led to look for a single strategy which will be "robust" over

a range of A values so broad that no single defense y*(A) is

optimal for the basic game described in the previous section.

Obviously, from an attacker's point of view, if he wished

to minimize the total expected fraction of targets surviving, he

would attack with his largest arsenal because v*(A) is a non-

increasing function of A. A defender who knew that the attacker

would use an entire arsenal A would prepare for an attack of that

size and hence use the strategy y*(A).

K If, however, A were not known, or known only to be an upper

bound on the attacker's arsenal, and if the defense had to be

concerned with smaller attacks, y*(A) would generally be sub-

optimal.

We assume that there is given a value A' which represents

an upper bound on the attack size. In this paper we set A' =

10,000.

As a measure of robustness, we choose the ratio defined by

the expected fraction of surviving targets SA(x,y) for an attack

of size A divided by the optimal game value v*(A):

RA(x'Y) = SA(x,y)/v*(A)

and seek to determine a defense strategy y* which maximizes the

smallest of these ratios over a set of A values.

9



we obtain

t P i- P) y

If we assume that

-ik L Pjk

for each k (more attacking weapons on a target will decrease the

probability of survival for a fixed number of defenders), then

Pi - PJ > 0

so that we may assume t > 0, and therefore s > 0, i.e., non-

negativity conditions may be imposed on all variables of the

K labove linear program. Non-negativity is convenient for

computational reasons.

Let x*(A), y*(A) and v*(A) denote the solution of the above

linear program. Note that the dual variables associated with the

inequality constraints of LP(0) constitute x*(A).

Note that LP(0), as a function of the parameter A (which

occurs in the objective function only), defines the value v*(A)

for each A > 0. It is well-known that v*(A) is piecewise linear

Iand convex. It is also clearly monotonically nonincreasing.

.4
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This value can be used to measure the effectiveness of a defense

of size D against an attack of size A, where the probabilities

PiJ are given.

By taking the dual of the inside problems defining G, we

obtain the linear program:

v*(A) =maximum [s -(A/T)t]

suhject to:

s < Poy

s -t < Ply

s -Rt <Pys. R - LP (0 )

S
j y=0 -

J=O

S
!. Jyj -D/T.

" J=l

y > 0

where P denotes the ith row of P.

Note that, for any feasible y, at least two of the

* inequality constraints above must be binding at an (s,t) pair

which solves LP(O). Let i < J denote the indices of two such

constraints. From

s - it = Piy

s - Jt = Pjy

7
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Figures 2-5 display the expected number of survivors as a

function of the number of attackers for the cases studied.

The expected number of survivors always equals the game

value in II. This is so because the active strategies (those

pure strategies corresponding to positive components of a mixed

strategy) of yI are always among the active strategies of y*(A).

It is well-known in game theory that one player in a two-person

zero-sum game can play his active strategies with any probability

distribution and receive the game value provided that his

opponent is playing his optimal strategy. Also, the robust
II

strategy y yields expected numbers of survivors that are

nearly identical to the game value when the attacker is

uninformed of the defender's strategy.

The worst case for the defender is situation III, where the

attacker takes advantage of the defender's incorrect assumption

about the attacker's behavior. Note that the outcome for the

smaller attacks differs substantially from the game value while

the outcome for the larger attacks is the same.

By contrast, situation IIII lies below the game value for

all attacks, being superior to III for smaller attacks and

slightly inferior to I,II for larger attacks.
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SIMULTANEOUS ATTACK

Here we derive the particular expression adopted to compute

the pij's. We assume that a single target is under a simultaneous

attack by A identical missiles, and is being defended by D

identical interceptors. Let

d = probability that a defending interceptor will destroy
the attacking missile at which it is directed,

a = probability that an attacking missile will destroy the
target, given that it evades all defending inter-
ceptors.

We assume that the defense can see the entire attack, and must

decide on the number of interceptors that it assigns to each of

the attacking missiles.

It is easy to see that the probability of the target

surviving an attack of n attacking missiles, each of which are

being attacked by J defending interceptors, is

(1 - a(l - d)J)nJ

so that the probability of the target surviving is

D
P(A,D) = r (1 - a(l - d)J)nJ (2)

J=0

The defender wishes to maximize this.

We wish to show that the "uniform defense" obtained by

spreading the D interceptors as equally as possible over the A

attackers is optimal.

Consider any allocation of interceptors to attackers which

is not uniform. Then there is a pair i < j with ni, n > 0 where
i + 2 < J. Consider a new (and more uniform) allocation obtained
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by allocating i + 1 interceptors to one of the n i attackers, and

J - 1 interceptors to one of the n attackers. The probability

that the target now survives is

(1 - a(l - d)i+l)(1 - a(l -d) J - l )

(1 -a(1 d) 1)(1 -a(l -d) J )

times the old probability, and this is easily shown to be

greater than 1.

Thus the most uniform of defenses assigns

i = [D/A] defenders to ni = A (1 - <D/A>) attackers

and

j = [D/A] + 1 defenders to nj = A <D/A> attackers

(where [x] and <x> denote the integer and fractional parts of

x).

Substituting these values into (2) yields

P(A,D) = (1-a(1-d)[D/A]+l)A<D/A>(IEa(Id)[D/A])A(1-<D/A>)

Table 5 gives the numerical values of piJ for the examples

presented in Section V.
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Table 5. VALUES of Pij (SIMULTANEOUS ATTACK)

a=.7, d=.7

A 0 1 2 3 4 5 6 7 8 9 10o ,.ao .ooo 1000 o100 1.0000 .0000 10000o 1000oo 10000o 10000o 1.o0000 10000o

1 .3000 .7900 .9370 .9811 .9943 .9983 .9995 .9998 1.0000 1.0000 1.0000
2 .0900 .2370 .6241 .7402 .8780 .9193 .9625 .9755 .9887 .9926 .9966
3 .0270 .0711 .1872 .4930 .5848 .6936 .8227 .8614 .9019 .94" .9571
4 .81 .0213 .0582 .1479 .3895 .4620 .5479 .6499 .7708 .8071 .8451
5 .0024 .0064 .0169 .0444 .1169 .3077 .3650 .4329 .5134 .6090 .7223
6 .0007 .0019 .0051 .0133 .0351 .0923 .2431 .2883 .3420 .4056 .4811
7 .0002 .0006 .0015 .0040 .0105 .0277 .0729 .1920 .2278 .2702 .3204
8 .0001 0002 .0005 .0012 .0032 .0083 .0219 .0576 .1517 .1799 .2134
9 .0000 0001 .0001 .0004 .0009 .0025 .0066 .0173 .0455 1199 .1422

10 .0000 .0000 0000 .0001 .0003 .0007 .0020 0052 0137 .0360 .0947

3-.7. d=.9
AN, 0 1 2 3 4 5 6 7 8 9 10

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 .3000 .9300 .9930 .9903 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0900 .2790 .8649 .9235 .9860 .9923 .9986 .9992 .9999 .9999 1.0000

3 .0270 .0837 .2595 .8044 .8588 .9170 .9791 .9854 .9916 .9979 .9985

4 M001 .0251 .0778 .2413 .7481 .7987 .8528 .9106 .9723 .9785 .9847
5 .0024 .0075 .0234 .0724 .2244 .6957 .7428 .7931 .8469 .9042 .9655
6 .0007 .0023 .0070 .0217 .0673 .2087 .6470 .6908 .7376 .7876 .8409
7 .0002 .0007 .0021 .0065 .0202 .0626 .1941 .6017 .6425 .6860 .7325
8 .0001 .0002 .0006 .0020 .0061 .0188 .0582 .1805 .5596 .5975 .6380
9 .0000 0001 .0002 .0006 1o8 .0055 .0175 .0542 .1679 .5204 .5557
10 .0000 .0000 .0001 .0002 .0005 .0017 .0052 .0162 .0504 .1561 4840

a-.9, d-.7

0 1 2 3 4 5 6 7 8 9 10

1 .1000 .7300 .9190 .9757 .9927 .9978 .9993 .9998 .9999 1.0000 1.0000
2 .0100 .0730 .5329 .6709 .8446 .8967 .9520 .9686 .9855 .9905 .9956
3 .0010 .0073 .0533 .3890 .4897 .6165 .7762 .8240 .8749 .9289 .9451
4 .0001 .0007 .0053 .0389 .2840 .3575 .4501 .5666 .7133 .7573 .8040
5 .0000 .0001 .0005 .0039 .0284 .2073 .2610 .3285 .4136 .5207 .6555
S .0000 .0000 .0001 .0004 .0028 .0207 .1513 .1905 .2398 .3019 .3801
7 .0000 .0000 .0000 .0000 .0003 .0021 .0151 .1105 .1391 .1751 .2204
8 .0000 .0000 .0000 .00 .000 .0002 .0015 .0110 .0806 .1015 .1278
9 .0000 .0000 .0000 .0000 .0000 0000 0002 .0011 .0081 .0589 .0741

10 .0000 .0000 .0000 .0000 .0000 ,0000 .0000 .0001 .0008 .0059 .0430

a-.9, d=.9
A 0 1 2 3 4 5 6 7 8 9 10

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 .1000 .9100 .9910 .9901 .909 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 ,0100 .0910 .8281 .9018 .9821 .9001 .992 .9990 .9998 .9999 1.0000
3 .0010 0091 .0828 .7536 .8206 .8937 .9732 .9812 .9892 .9973 .9981
4 0001 .0009 .0033 .0754 .6857 .7468 .8133 .8857 .9645 .9724 .9803
5 ,000 .0001 0008 .0075 .068 .6240 6796 .7401 .8059 .8777 .9558
8 .0000 .0000 .0001 .0008 .0069 .0624 .5679 .6184 .6735 .7334 .7987

7 .0000 .000 .0000 .0001 0007 .0062 .0568 .5168 .5628 .6129 .6674
8 .0000 .0000 .0000 .0000 .0001 .000 .0057 .0517 .4703 .5121 .5577
9 .0000 .0000 .0000 .0000 .0000 0001 0006 .0052 .0470 .4279 .4660
10 0000 .0000 0000 0000 0000 .0000 .0001 .0005 .0047 .0428 .3894
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SEQUENTIAL ATTACK OF UNKNOWN SIZE

When the targets are under attack by an unknown number of
attackers, the "Prim-Read" firing doctrine may be imposed at the

targets (see, e.g., ' ). In this context, if there are D

defenders at a target, we assume that d(l) are fired at the first

attackers, d(2) at the second, and so on, where

Jd(j) = D

J=l

and where the d(j)'s are selected so that

/ A
max 1 - H (1 - a(l - d)d (j )) /Af

A=1,2,3... J=l

is minimized. Here a and d are defined as in Appendix A, and

the quantity in brackets above is the probability that the target

is destroyed per attacking weapon. In other words, the defense

is set so that the attacker is (approximately) indifferent to the

total number of RV's that he attacks with, in that their unit

effectiveness is about the same.

With the firing doctrines set for each D=l,2,..., the

values P(A,D) are computed from

A
P(A,D) = j (1 - a(l - d)d(i))

J=l

Table 6 lists these values for the single case a,d = .7, .9.
Figure 6 exhibits the differences between the game values for the

simultaneous and sequential cases.

IiThe robust strategy y in the case of sequential attack

of unknown size is

I (0.245, 0.000, 0.034, 0.056, 0.068, 0.080, 0.020, 0.000,

0.000, 0.000, 0.497) •
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SEQUENTIAL ATTACK OF KNOWN SIZE

Here we address the case where the attack is "sequential",

V i.e., there is enough time between successive attackers that they

can be ordered and the attack size is known. We define, as

before:

P(A,D) = probability that the target survives, given

that it is under attack by A missiles and is
optimally defended by D defenders.

Obviously, if the defender knows the value of A, he will defend

uniformly according to the result of Appendix A. (A simultaneous
attack can be considered sequential by numbering the attackers in

any order.)

However, if the defender has a shoot-look-shoot capability,

and sufficient time between arrivals, he can choose to structure

his defense in volleys, with the prospect of saving defenders for

use against future attackers.

Suppose the defender has time for two volleys against each

incoming attacker. Let a be, as before, the kill probability of

an attacking missile. Let

d = probability that a defending interceptor will destroy
N an attacking missile in the first volley

and

e = probability that a defending interceptor will destroy
an attacking missile in the second volley.

Let

d(A) = number of interceptors to shoot at t!.e first of A
attacking missiles in the first volley

I: and
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e(A) =number of interceptors to shoot at the first of AU attacking missiles in the second volley, given that
the first volley has failed.

Then

l-d(l-d) d(A) is the probability that the first volley is
successful,

(l-d) d(A) ll(le )e(A)) is the probability that the first
volley fails but the second is
successful,

ad(-d) d (A) (1e)e(A) (1a) is the probability that both
volleys fail and the attack also
fails.

The following recursion holds:

P(A,D) =max (1(- P(A-l,D-d(A))

d(A),e(A) e I t

d(A) + e(A) < D + (1d ()(-~- eA PA1DdA-()

with

p +
P(O,D) =1 for all D e I

Given a, d and e. the recursion can be solved by dynamic

programming to determine PCA,D) = pjj. Note that the solution

of this recursion would agree with the results of Appendix A

in the case where e-0.

Obviously, the above recursion could be extended if the

defender had more than two opportunities to protect himself.

Shoot-look-shoot capabilities in the Prim-Read context have

also been investigated (Falk [2]).
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